³⁹Sc p decay:? 1994Bl10,1989LiZF

Type Author Citation Literature Cutoff Date
Full Evaluation Jun Chen NDS 152, 1 (2018) 30-Sep-2017

Parent: 39 Sc: E=0; J^{π} =(7/2⁻); $T_{1/2}$ <300 ns; Q(p)=597 24; %p decay=100.0

1

 $^{^{39}}$ Sc-J $^{\pi}$,T $_{1/2}$: From Adopted Levels of 39 Sc. J^{π} is from systematics (1992Mo15, 2017Au03); T $_{1/2}$ is from the limit of time-of-flight=300 ns in 1994B110. Other: T $_{1/2}$ <130 ns (1989LiZF).

³⁹Sc-Q(p): From 2017Wa10.

³⁹Sc-%p decay: %p=100 (most probably pure proton emitter, 2017Wa10).

¹⁹⁸⁹LiZF: in 9 Be(40 Ca,X) reaction at 26 MeV/nucleon, the authors searched for 39 Sc; only an upper limit for its yield was established from which $T_{1/2}$ <130 ns was deduced.

¹⁹⁹⁴B110: ³⁹Sc was not detected in ⁹Be(⁵⁸Ni,X) at 650 MeV/nucleon with time-of-flight of 300 ns.

³⁹Sc is expected to decay 100% by proton decay to ³⁸Ca.